
Programming the Motorola MC68HC11 Microcontroller

COMMON PROGRAM INSTRUCTIONS WITH EXAMPLES

aba Add register B to register A Similar commands are abx aby
 aba add the value in register B to the value in register A and store in register A

anda Logical And with register A Similar command is andb Differs from bita in that the contents of
register A is changed

 anda #label perform a logical AND between the value stored at memory location label
and register A and store the result in register A

asr Arithmetic Shift Right Similar commands are asra asrb asl asla aslb
 asr Preserves signed numbers by retaining the leading bit. Use lsr and related

commands with unsigned numbers. A right shift divides by 2, a left shift
multiplies by 2.

bcc Branch if C-bit is clear Similar command is bcs (branch if C-bit set)
 bcc branches if the C-bit is clear. The C-bit indicates a carry or borrow.

bclr Clear Bit(s) Similar command is bset
 bclr #label $F0 this example zeros the first four bits of the value stored at memory location

label. $F0 is the mask, in binary it is 11110000; the 1's correspond to the
bits that will be cleared.

beq Branch on Equal or Zero, i.e. if CCR Z-bit is 1
 cmpa #20 compares the value in register A to decimal 20 by subtracting 20 from A.
 beq label if the last value in memory was a zero (checks the CCR Z-bit) then go to

program location label.
 tsta test the value in register A
 beq label if the value in register A is zero (i.e. the Z-bit is set) then we branch to the

memory location label.

bita Logical And with register A Similar commands are bita, bitb Differs from anda in that
register A remains unchanged. The result affects only the CCR.

 bita #%10000000 this example checks bit 7 in register A and set the CCR accordingly. This
could be follow with the beq or bne instruction to branch based on the
result of the bit test. Another way to test bit 7 is to simply tsta and then
branch based on the N-bit since bit 7 = 1 is characteristic of a signed
negative number and will set the N-bit of the CCR.

ble Branch if Lower or Equal Compares signed numbers. Similar commands: blt (branch if lower),
bgt (branch if greater than), bge (branch if greater or equal). See bls
for comparable unsigned number commands with examples.

bls Branch if Lower or Same Compares unsigned numbers. Similar commands: blo (branch if lower),
bhi (branch if higher), bhs (branch if higher or same). May not work properly
if there is an overflow.

 cba first compare the value in register B to the value in register A (A-B)
 bls label branch to location label if A is less than or equal to B

 ldd Num1 16-Bit Version: first load the value stored at Num1 into register D
 cpd #1000 compare the value in D to 1000
 bls label branch to location label if D is less than or equal to 1000

bmi Branch on Minus Similar command is bpl (branch on positive)
 tsta test the value in register A
 bmi label if the value in register A is negative (i.e. the N-bit is set) then we branch to

the memory location label.

bne Branch if Not Equal or Zero Opposite of beq

bra Branch
 bra label go to program location label and continue execution (don't return).

brclr Branch if Bit(s) Clear
 brclr label1 #%11100000 label2 go to program location label2 if the first three bits of

the value stored at label1 are zeros (clear).

bsr Branch to Subroutine
 bsr label go to the subroutine at program location label and return here when done

bvs Branch if Overflow bit is set
 bvs label go to the program location label if the v bit is set in the CCR. The V-bit

indicates a twos-complement overflow.

cba Compare B to A Similar commands are cmpa cmpb cpd cpx cpy; see example at bls
 cba compare the value in register B to the value in register A by subtraction (A-B)

and set the CCR accordingly. If A=B then Z→1. Can be used before beq,
ble, blt, bgt, bge, bls, blo, bhi, bhs, etc.

clr Replace Contents with Zeros Similar commands are clra clrb
 clr Ddrc this example causes Port C to be an input port (all pins). This would go

near the beginning of the program after the lds command.
 clra this example places zeros in register A.

cmpa Compare to A Similar commands are cba cmpb cpd cpx cpy; see example at bls
 cmpa #$04 this example compares the value in register A to $04 by subtracting $04 from

register A. If the result is zero then they are equal and the CCR bit Z is set to 1.
$04 is EOT or end of string. Often used before beq.

 cmpa #EOT this example compares the character in register A to the end of string character.
 cmpa #end-3 "end" must be a constant, not a label. The subtraction of end-3 is performed and

the value in register A is compared to the result.
 cmpa 0,x compare the value in register A to the value in the byte pointed to by register X.
Refer also to the ldaa command for discussion on the use of the # sign.

coma Complement of A Similar commands are com comb
 coma complement the value in register A and store the result in register A.

dec Decrement by 1 Similar commands are deca decb des dex dey
 dec label decrement the value stored at memory location label by 1.
 deca decrement the value stored in register A by 1. (Inherent addressing)
 des decrement the stack pointer; may be used to allocate stack space
 dec 0,x decrement the value stored at the top of the stack

end End Program
 end last program instruction

eora Exclusive OR with reg A Similar command is eorb
 eora label an exclusive OR is performed with the contents of register A and the value at

address label with the result stored in register A.

equ Equate a Label to a Value
label equ 3 the assembler substitutes the value 3 wherever it sees label in the code. This

does not use any memory space. The purpose is to facilitate code maintenance
by permitting a single change of value here to result in multiple changes
throughout the code wherever label appears. The line should be placed toward
the beginning of the program or section of code before the first use of label.

fcb Form Constant Byte see SUBROUTINE LIBRARIES

fcc Form Constant Character String see SUBROUTINE LIBRARIES

fdb Form Double Byte Constant
 fdb main This particular example is common to all our programs. By appearing after the

org $FFFE instruction near the end of the program, this code loads the
starting address of the program (represented by the label main) into the last two
bytes of ROM. The cpu looks in the last two bytes of ROM to obtain the address
for the beginning of the program when power is applied or in the event of a
reset.

label fdb 5,8,465,17,89 5 is stored in a 2-byte block at mem location label, 8 is stored in a
2-byte block at location label+2, etc..

fdiv Fractional Divide D/X Related commands are fdiv, mul
 ldd #2 2 is loaded into register D (numerator)
 ldx #3 3 is loaded into register X (denominator)
 fdiv actually, the numerator is multiplied by 65536 before being divided by the

denominator, quotient (43690) goes in register X, remainder (2) in register D, I
think.

inc Increment by 1 Similar commands are inca incb ins inx iny
 inc label increment the value stored at memory location label by 1.
 inca increment the value stored in register A by 1. (Inherent addressing)
 ins increment the stack pointer; used to deallocate space on the stack

idiv Integer Divide D/X Related commands are fdiv, mul
 ldd #9 9 is loaded into register D (numerator)
 ldx #4 4 is loaded into register X (denominator)
 idiv division takes place, quotient (2) goes in register X, remainder (1) in register D

jmp Jump to Another Location
 jmp label go to program location label. You can use this if you are not planning on

returning to the current location.

jsr Jump to Subroutine
 jsr InString go to a subroutine. This is used with the libraries because they are too far away

to be accessed with the branch instructions which use relative addressing.
Program execution returns to this point following the subroutine.

 jsr InitSCI this example initializes the serial port (SCIWin on our simulator) and appears
once in the program right after main. InitSCI is in our subroutine library.

ldaa Load Register A Similar commands are ldab ldd lds ldx ldy
 ldd 10 load the value at address $000A into register D
 ldaa #10 load the decimal value 10 into register A
 ldaa #$B load the hex value B into register A
 ldaa #'B load the ASCII character code for B into register A
 ldaa #%10011001 load the binary value 10011001 into register A
 ldd #label load the address value of label into register D
 ldaa label load the data value of label into register A
 ldaa Porte load the data from input Port E into register A
 constequ 2 create a constant
 ldaa #const load the data value 2 into register A
 ldaa const,x load the data that is 2 bytes past the address in register X into register A
 ldaa 4,X load the data located 4 bytes past the location stored in register X into register A

Note the confusion we might have since #10 and label and #const all denote data and 10 and #label denote
addresses, and in the line ldaa const,x (indexed addressing), const is referring to data (2) again without the #
sign. So although the # is significant in determining whether we are talking addresses or data, its meaning is not
consistent in that regard. When the # sign is used it denotes the immediate addressing mode and this only occurs with
load and compare commands (I think). So when we have the command beq label, label is an address even though the
sign is absent.

lds Load Stack Pointer
 lds #$00FF this example initializes the stack pointer; required if the stack is to be used;

same value is normally used; goes near the top of the program after org
$E000

lsr Logical Shift Right Similar commands are lsra lsrb lsrd and for left shift: lsl lsla etc.
For use with unsigned numbers. See asr and related commands for use with
signed values. A right shift divides by 2, a left shift multiplies by 2.

 lsr label divide the value pointed to by label by 2.
 lsra the contents of register A are shifted to the right one bit and bit 7 becomes zero.

mul Multiply A × B = D Related commands are idiv fdiv
 ldaa #10 load 10 into register A
 ldab #5 load 5 into register B
 mul the values are multiplied, result goes in register D (unsigned values only, no

overflow is possible).

org Sets the Program Counter, which specifies the address of the next byte to be loaded
 org 0 first program instruction
 org $E000 follows global variables; moves to the beginning of the program area
 org $FFFE third from last command; makes room for a 2-byte reset address. The address

stored here tells the CPU where to look for the beginning of the program when it
is powered up.

psha Push Register A onto Stack Similar commands are pshb pshx pshy
 psha put the contents of register A on the stack and decrement the stack pointer; used

for saving the contents of a register at the start of a subroutine, the registers are
restored near the end of the subroutine using pula pulb pulx puly

pula Pull from Stack to Register A Similar commands are pulb pulx puly
 pula pull the value from the top of the stack and store in register A; increment the

stack pointer; used for restoring the contents of a register at the end of a
subroutine, the registers are saved near the beginning of the subroutine using
psha pshb pshx pshy

rmb Reserve Memory Bytes
label rmb 2 creates a global variable or array, goes near the top of the program after org

0. Consists of the label name to be used for the memory location followed by
rmb following by the number of bytes

rts Return from Interrupt Similar command is rts
 rti goes at the end of an interrupt routine, pulls all registers and the return address

from the stack.

rts Return from Subroutine Similar command is rti
 rts goes at the end of a subroutine, pulls the return address from the stack.

sev Set the V-bit
 sev sets the V-bit to 1 in the condition code register (CCR)

staa Store the value that is in Register A into . . . Similar commands are stab std sts stx sty
 staa label store the value that is in register A in the memory location label

stop Stop Program Execution
 stop stops the program at this point

suba Subtract from register A Similar commands are subb subd
 suba label subtract the value stored at label from register A and store in register A
 suba #12 subtract decimal 12 from register A and store in register A

tab Transfer A to B transfers the value in register A to register B, leaving A intact

tcnt Timer Counter Register a 2-byte register that increments once with each program instruction during
execution

tsx Transfer Stack Pointer to Register X Similar command txs
 tsx stores the address of the last value saved on the stack into register X. The stack

pointer continues to point to the next empty byte, i.e. SP + 1 = X.

xgdx Exchange D and X exchanges values in registers D and X. Commonly used to permit 16-bit
arithmetic to be done on a register address.

